

US010078984B2

(12) United States Patent

Nathan et al.

(10) Patent No.: US 10,078,984 B2

(45) **Date of Patent:** Sep. 18, 2018

(54) DRIVING CIRCUIT FOR CURRENT PROGRAMMED ORGANIC LIGHT-EMITTING DIODE DISPLAYS

(75) Inventors: Arokia Nathan, Waterloo (CA); Gholamreza Chaji. Waterloo (CA)

(73) Assignee: Ignis Innovation Inc., Waterloo (CA)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 1270 days.

(21) Appl. No.: 11/350,610

(22) Filed: Feb. 9, 2006

(65) Prior Publication Data

US 2006/0208961 A1 Sep. 21, 2006

(30) Foreign Application Priority Data

Feb. 10, 2005 (CA) 2496642

(51) **Int. Cl.**

G09G 3/30 (2006.01) G09G 3/3283 (2016.01) H05B 33/08 (2006.01) G09G 3/3241 (2016.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC .. G09G 3/3208; G09G 3/3216; G09G 3/3225; G09G 3/3233; G09G 3/3241; G09G 3/3275; G09G 3/30; G09G 3/32; G09G 3/3283; G09G 3/3291

(56) References Cited

U.S. PATENT DOCUMENTS

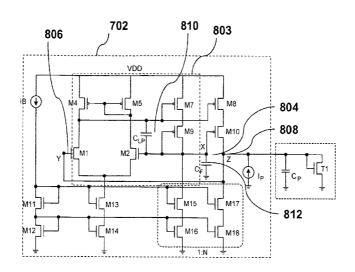
3,506,851 A	4/1970	Polkinghorn et al.
3,774,055 A	11/1973	Bapat et al.
4,090,096 A	5/1978	Nagami
4,160,934 A	7/1979	Kirsch
4,354,162 A	10/1982	Wright
4,617,555 A *	10/1986	Sheiman 340/531
4,943,956 A	7/1990	Noro
4,996,523 A	2/1991	Bell et al.
5,153,420 A	10/1992	Hack et al.
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CA	1 294 034	1/1992
CA	2 109 951	11/1992
	(Co	ntinued)

OTHER PUBLICATIONS

Ahnood et al.: "Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements"; dated Aug. 2009.


(Continued)

Primary Examiner — Alexander Eisen
Assistant Examiner — Nelson Lam
(74) Attorney, Agent, or Firm — Nixon Peabody LLP

(57) ABSTRACT

A load driving circuit for a load having a parasitic capacitance associated therewith is provided. The load being current programmed. The driving circuit has a data line having a voltage controlling the load, a feedback loop having a lowpass filter for monitoring the voltage of the data line; and a current source for providing a current to the data line; the current source being controlled by a signal line and an output from the lowpass filter.

8 Claims, 10 Drawing Sheets

US 10,078,984 B2 Page 2

U.S. PATENT DOCUMENTS 6693-388 18 2-2004 Common et al. 5.084.66 A 44993 Shie et al. 5.084.66 A 44993 Robb et al. 5.204.66 A 44993 Robb et al. 6.204.65 B 4 24994 Robb et al	(56)	References Cited	6,690,000		Muramatsu et al.	
5.198.803	II S D	DATENT DOCUMENTS				
S. 198,803 A 31993 Shie et al. 6,697.057 B2 22004 Koyama et al. 5,204.651 A 11993 Robe et al. 6,724.151 B2 4,2004 Voo 5,408.051 A 11995 Robe et al. 6,724.151 B2 4,2004 Voo 5,408.051 A 11995 Robe et al. 6,724.151 B2 4,2004 Voo 5,408.051 A 11995 Robe et al. 6,734.051 B3 5,2004 Sanford et al. 6,734.051 B3 5,2004 Sanford et al. 6,734.051 B3 5,2004 Sanford et al. 6,738.051 B3 5,2004 Sanford et al. 6,736.051 B3 5,2004 Sanford et al. 6,738.051 B3 5,2004 Sanford et al. 6,738.051 B3 6,709.073 A 11997 Sanford et al. 6,759.075 B1 6,709.073 A 11997 Sanford et al. 6,759.075 B1 6,709.073 A 11997 Sanford et al. 6,759.075 B1 6,709.073 A 11997 Sanford et al. 6,759.075 B2 8,2004 Sanford et al. 6,769.073 A 11998 Sanford et al. 6,769.073 B2 8,2004 Sanford et al. 6,769.073 B2 8,200	0.5.1	ATENT DOCUMENTS				
September Sept	5.198.803 A	3/1993 Shie et al.				
Sales 18						
September Sept						
5.572.494 A 111996 Lenter al. 6.738.035 B1 2 2009 Fan 5.589.847 A 121996 Lewis 6.733.655 B2 62004 Shibe al. 5.610.033 A 41997 Weisfield 6.735.334 B2 62004 Shibe al. 5.610.033 A 41997 Weisfield 6.735.334 B2 62004 Shibe al. 5.648.276 A 71997 Hane et al. 6.735.674 B2 62004 Shibe al. 5.670.733 A 111997 Number et al. 6.755.674 B1 6200 Decause et al. 5.670.733 A 111997 Number et al. 6.755.674 B1 6200 Decause et al. 5.749.68 A 21998 Reda 6.757.718 B2 8200 Shibe al. 5.749.68 A 21998 Reda 7.777.718 B2 8200 Shibe al. 5.749.560 A 41998 Kolparda et al. 315/169.3 6.777.88 B2 8200 Shibe al. 5.749.560 A 41998 Kolparda et al. 6.785.674 B2 102004 Lin et al. 5.749.560 A 41998 Kolparda et al. 6.806.678 B2 102004 Lin et al. 5.749.560 A 41998 Kolparda et al. 6.806.678 B2 102004 Lin et al. 5.749.560 A 41998 Kolparda et al. 6.806.678 B2 102004 Lin et al. 5.749.560 A 41998 Kolparda et al. 6.806.678 B2 102004 Lin et al. 5.749.560 A 41998 Kolparda et al. 6.806.678 B2 102004 Lin et al. 5.749.560 A 41999 Nawaha 6.806.778 B2 102004 Lin et al. 5.749.560 A 41999 Nawaha 6.806.778 B2 102004 Lin et al. 5.749.560 A 41999 Nawaha 6.806.778 B2 102004 Lin et al. 5.749.579 A 78999 Decame et al. 6.806.778 B2 102004 Shimoda 5.749.579 A 81999 Okamun et al. 6.835.371 B2 22005 Majaima et al. 5.749.579 A 91999 Shewart et al. 6.835.371 B2 22005 Majaima et al. 5.749.579 A 91999 Shewart et al. 6.835.371 B2 22005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et al. 5.749.579 A 91999 Nawaha 6.855.750 B2 42005 Majaima et						
5.580.847 A 12.1996 Lowis						
Solitor Soli			6,753,655	B2 6/2004	Shih et al.	
5,670,973 A 9,1997 Basselti et al. 6,756,982 BI 6,2009 Decause et al. 5,761,978 A 1,1999 Numoe et al. 6,756,988 BI 6,2009 Vunturbashi et al. 5,741,968 A 2,1998 Ricela 6,771,1028 BI 8,2009 Simfordet al. 5,721,950 A 1,1998 Sousai et al. 6,771,788 BI 2,2000 Vinters 5,743,600 A 1,1998 Soubatzki et al. 6,806,697 BI 1,0000 Soubatzki et al. 6,807,671 BI 2,2005 Soubatzki et al. 6,807,674 BI 2,2005 Soubatzki et al. 6,907,674 BI 2,2						
Septiment Sept						
S714,908 A 21998 Roda 6,771,028 B1 8,2004 Winters S724,956 A 31998 Wiel et al. 315/1693 6,777,388 B2 8,2004 Kondo 5,748,160 A 1998 Kolsavi et al. 6,781,876 B2 8,2004 Kimura 5,748,160 A 1998 Kolsavi et al. 6,806,637 B2 10,2004 Lin et al. 1,2005 Kimura						
S.723,950 A * 9 .1998 Wei et al						
Syr34,5600 A 1098 Kolparzik et al. 6,806,407 B2 10/2004 John	5,723,950 A *		02.3			
5,748,160 A 5,1998 Shich et al. 6,806,497 Bz 10/2004 Jo						
5,815,303						
S870,071 A 21999 Kawahata 6,806,887 B2 10,2004 Sempel et al.			6,806,638	B2 10/2004		
5880.582						
5,903,248						
S.917.280 A						
5.933,794 \(\) \(\) \(\) \(7.1999 \) \(\) \(\text{Carth et al.} \) \(\) \(6.875,117 \) \(\) \(\) \(\) \(\						
5,949,398						
Sy52,789 A 9/1999 Sewart et al. 6,885,356 B2 42005 Each						
5.952,091 A 9199						
5,982,104 A 11/1999 Sanski et al. 6,990,243 Bz 6,2005 Euchard						
1						
Company Comp						
Company					-	
6,097,360 A						
Color						
6,229,506 B1 5/2001 Dawson et al. 6,937,215 B2 8/2005 Kitaura et al. 6,229,508 B1 5/2001 Kane 6,947,220 B2 8/2005 Komiya et al. 6,246,180 B1 6/2010 Sano et al. 6,943,500 B2 9/2005 Komiya et al. 6,252,248 B1 6/2010 Kungane 6,947,022 B2 9/2005 McCartney 6,265,949 B1 7/2001 Tamukai 6,941,194 B2 10/2005 McCartney 6,267,1825 B1 8/2001 Greene et al. 6,955,4194 B2 10/2005 Bae et al. 6,271,825 B1 8/2001 Holloman 6,975,142 B2 12/2005 Azami et al. 6,386,896 B1 9/2001 Holloman 6,975,142 B2 12/2005 Azami et al. 6,301,939 B1 10/2001 Appelberg et al. 6,995,519 B2 2/2006 Azami et al. 6,301,932 B1 10/2001 Chung et al. 6,995,519 B2 2/2006 Azami et al. 6,323,631 B1 11/2001 Column et al. 6,995,519 B2 2/2006 Azami et al. 6,323,631 B1 11/2001 Unang 7,027,015 B2 4/2006 Booth, Jr. et al. 6,337,345 B1 4/2002 Knapp et al. 7,027,078 B2 4/2006 Booth, Jr. et al. 6,373,484 B1 4/2002 Knapp et al. 7,027,078 B2 4/2006 Booth, Jr. et al. 6,373,484 B1 8/2002 Knapp et al. 7,034,793 B2 4/2006 Keilyin et al. 6,417,825 B1 7/2002 Shen et al. 7,034,793 B2 4/2006 Keilyin et al. 6,443,848 B1 8/2002 Stewart et al. 7,034,793 B2 4/2006 Kimura 6,437,106 B1 8/2002 Stewart et al. 7,04,733 B2 6/2006 Cok et al. 6,443,848 B1 8/2002 Stoner et al. 7,04,733 B2 6/2006 Cok et al. 6,445,845 B2 11/2004 Kimura 7,088,052 B2 8/2006 Cok et al. 6,552,315 B2 2/2003 Gamp et al. 7,122,835 B1 B1 8/2006 Cok et al. 6,552,315 B2 2/2003 Kawashima 7,116,088 B2 2/2006 Cok et al. 6,552,315 B2 2/2003 Kawashima 7,116,088 B2 2/2006 Cok et al. 6,580,657 B2 6/2003 Bae et al. 7,122,835 B1 10/2006 Cok et al. 6,580,657 B2 6/2003 Sanford et al. 7,124,335 B2 6/2007 Cok 6,688,645 B1 1/2004 Sung 7,274,363 B2 7/2007 Nathan et al. 6,688,645 B1 1/2004 Sung 7,274,363 B2 2/2007 Natha	6,144,222 A					
Canal						
6,246,180 B1 6 (2001 Nishigaki 6,940,214 B1 9/2005 Komiya et al. 6,252,248 B1 6/2001 Sano et al. 6,943,500 B2 9/2005 LeChevalier (5,94,194 B1 1/2001 Kurogane 6,947,022 B2 9/2005 McCartney (6,262,589 B1 7/2001 Tamukai 6,954,194 B2 10/2005 Bae et al. 6,271,825 B1 8/2001 Greene et al. 6,955,547 B2 10/2005 Bae et al. 6,288,696 B1 9/2001 Holloman 6,975,142 B2 12/2005 Azami et al. 6,304,039 B1 10/2001 Appelberg et al. 6,955,510 B2 12/2005 Azami et al. 6,304,039 B1 10/2001 Dawson et al. 6,995,510 B2 12/2005 Arnold et al. 6,307,332 B1 10/2001 Dawson et al. 6,995,510 B2 12/2005 Arnold et al. 6,309,525 B1 11/2001 Chung et al. 6,995,510 B2 12/2005 Arnold et al. 6,309,525 B1 11/2001 Cok et al. 6,995,510 B2 1/2006 Murakami et al. 6,302,332 B1 11/2001 Usung 7,023,408 B2 4/2006 Chen et al. 315/169,3 6,332,345 B1 11/2001 Juang 7,027,015 B2 4/2006 Booth, Jr. et al. 6,332,617 B1 5/2002 Gleason 7,034,793 B2 4/2006 Sekiya et al. 6,417,825 B1 7/2002 Shen et al. 7,027,078 B2 4/2006 Sekiya et al. 6,417,825 B1 7/2002 Shen et al. 7,034,793 B2 4/2006 Kimura 6,433,488 B1* 8/2002 Bu 315/169,3 7,061,451 B2 6/2006 Kimura 6,445,369 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Cok et al. 6,453,69 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,088,051 B1 8/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,088,051 B1 8/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,088,051 B1 8/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,088,051 B1 8/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,110,2378 B2 9/2006 Cok et al. 6,501,466 B1 12/2002 Yangazaki 7,114,493 B2 10/2006 Fyer et al. 6,580,408 B1 6/2003 Bae et al. 7,112,838 B1 10/2006 Fyer et al. 6,580,408 B1 6/2003 Bae et al. 7,112,838 B1 10/2006 Fyer et al. 6,680,644 B1 10/2003 Yangazaki et al. 7,224,338 B2 6/2007 Cok 6,686,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Sakayas et al. 6,688,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Sakayas et al. 6,688,058 B1 12/2004 Sung 7,224,333 B2 8/2007 Tanghe et al.						
6,259,424 BI 7,2001 Kurogane 6,947,022 B2 9,2005 McCartney 6,262,558 BI 7,2001 Tamukai 6,956,547 B2 10,2005 Bae et al. 6,288,696 BI 9,2001 Holloman 6,975,144 B2 12,2005 Azami et al. 6,304,039 BI 10,2001 Dawson et al. 6,995,519 B2 12,2005 Azami et al. 6,307,332 BI 10,2001 Dawson et al. 6,995,519 B2 2,2006 Murakami et al. 6,309,525 BI 10,2001 Chung et al. 6,995,519 B2 2,2006 Arnold et al. 6,303,622 BI 10,2001 Juang 7,023,408 B2 4,2006 Chen et al. 6,323,631 BI 11,2001 Juang 7,027,015 B2 4,2006 Chen et al. 6,302,617 BI 5,2002 Gleason 7,037,379 B2 4,2006 Sekiya et al. 6,417,825 BI 7,2002 Shen et al. 7,033,438 BI 8,2002 Shen et al. 7,033,438 BI 8,2002 Shen et al. 7,033,438 BI 8,2002 Shen et al. 7,033,439 B2 6,2006 Kimura 6,445,369 BI 8,2002 Shen et al. 7,046,473 B2 6,2006 Chen et al. 6,453,69 BI 8,2002 Yang et al. 345/82 7,071,932 B2 7,2006 Chen et al. 7,047,335 B2 6,2006 Chen et al. 7,047,335 B2 7,0006 Chen et a						
6,262,589 B1 7/2001 Tamukai 6,954,194 B2 10/2005 Matsumoto et al.						
6,271,825 B1 7,200 Foreme et al. 6,956,547 B2 10/2005 Azami et al.					2	
6,288,696 Bl 9/2001 Holloman 6,975,142 Bz 12/2005 Azami et al. 6,304,039 Bl 10/2001 Appelberg et al. 6,975,332 Bl 12/2007 Arnold et al. 6,304,039 Bl 10/2001 Chung et al. 6,995,510 Bz 2/2006 Arnold et al. 6,310,962 Bl 10/2001 Cok et al. 7,023,408 Bz 4/2006 Chen et al. 6,323,3631 Bl 11/2001 Juang 7,023,408 Bz 4/2006 Chen et al. 6,356,029 Bl 3/2002 Hunter 7,027,015 Bz 4/2006 Reihl 6,392,617 Bl 5/2002 Gleason 7,034,793 Bz 4/2006 Reihl 6,392,617 Bl 5/2002 Shen et al. 7,038,392 Bz 5/2006 Libsch et al. 6,417,825 Bl 7/2002 Stewart et al. 7,057,359 Bz 6/2006 Hung et al. 6,433,488 Bl * 8/2002 Bu 315/169.3 7,061,451 Bz 6/2006 Cok et al. 6,433,488 Bl * 8/2002 Stoner et al. 7,064,473 Bz 6/2006 Cok et al. 6,445,369 Bl * 9/2002 Yang et al. 345/82 7,071,932 Bz 7/2006 Libsch et al. 6,453,469 Bl * 9/2002 Yang et al. 345/82 7,088,052 Bz 8/2006 Cok et al. 6,501,098 Bz 12/2002 Yamazaki 7,088,052 Bz 8/2006 Kimura 6,501,098 Bz 12/2002 Yamazaki 7,106,285 Bz 9/2006 Change et al. 6,522,315 Bz 2/2003 Gu 7,112,820 Bz 9/2006 Change et al. 6,533,398 Bz 6/2003 Sane et al. 7,127,380 Bl 10/2006 Change et al. 6,583,398 Bz 6/2003 Sanford et al. 7,127,380 Bl 10/2006 Cok 6,583,398 Bz 6/2003 Sanford et al. 7,127,380 Bz 10/2006 Cok 6,618,030 Bz 9/2003 Yamazaki 7,164,417 Bz 1/2007 Cok 6,639,244 Bl 10/2003 Yamazaki 4. 7,245,277 Bz 7/2007 Sawase et al. 6,639,244 Bl 10/2003 Yamazaki 4. 7,245,277 Bz 7/2007 Ishizuka 4. 6,668,645 Bl 1/2004 Sung 7,226,753 Bz 8/2007 Ishizuka 4. 6,668,645 Bl 1/2004 Sung 7,227,573 Bz 8/2007 Ishizuka 4.						
6,307,322 B1 10/2001 Dawson et al. 6,310,962 B1 10/2001 Chung et al. 6,320,325 B1 11/2001 Juang 6,323,631 B1 11/2001 Juang 7,023,408 B2 4/2006 Chen et al. 6,356,029 B1 3/2002 Hunter 7,027,015 B2 4/2006 Reihl 6,392,314 B1 4/2002 Knapp et al. 7,027,015 B2 4/2006 Reihl 6,392,617 B1 5/2002 Gleason 7,034,793 B2 4/2006 Reihl 6,392,617 B1 7/2002 Shen et al. 7,034,793 B2 4/2006 Reihl 6,414,661 B1 7/2002 Stewart et al. 6,413,485 B1 7/2002 Stewart et al. 6,433,488 B1* 8/2002 Bu 315/169.3 7,061,451 B2 6/2006 Hung et al. 6,433,488 B1* 8/2002 Stoner et al. 6,437,106 B1 8/2002 Stoner et al. 6,437,106 B1 8/2002 Stoner et al. 6,437,845 B2 11/2002 Vang et al. 6,445,369 B1* 9/2002 Vang et al. 6,475,845 B2 11/2002 Vang et al. 6,475,845 B2 11/2002 Vang et al. 6,51,646 B1 12/2002 Vang et al. 6,522,683 B1 2/2003 Gu 7,102,378 B2 9/2006 Kun et al. 6,522,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Kun et al. 6,523,827 B2 3/2003 Kawashima 7,116,058 B2 9/2006 Change et al. 6,538,375 B1 6/2003 Sekiya et al. 7,124,330 B1 10/2006 Kun et al. 7,124,330 B1 10/2006 Kun et al. 7,124,330 B1 10/2006 Kun et al. 7,124,333 B2 10/2006 Change et al. 7,124,335 B1 10/2006 Kun et al. 7,124,335 B2 10/2006 Kun et al. 7,124,335 B2 10/2006 Kun et al. 7,124,335 B2 10/2006 Kun et al.			6,975,142	B2 12/2005		
6,310,962 B1 10/2001 Chung et al. 6,995,519 B2 * 2/2006 Arnold						
6,320,325 B1 11/2001 Juang 7,023,408 B2 4/2006 Chen et al. 315/169.3 6,323,631 B1 11/2001 Juang 7,027,015 B2 4/2006 Booth, Jr. et al. 6,373,454 B1 4/2002 Knapp et al. 7,027,078 B2 4/2006 Sekiya et al. 6,373,454 B1 5/2002 Gleason 7,034,793 B2 4/2006 Sekiya et al. 6,414,661 B1 7/2002 Shen et al. 7,038,392 B2 5/2006 Libsch et al. 6,417,825 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 Kimura 6,433,488 B1* 8/2002 Stower et al. 7,057,359 B2 6/2006 Kimura 6,437,106 B1 8/2002 Stoner et al. 7,057,359 B2 6/2006 Cok et al. 6,453,69 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Libsch et al. 6,475,845 B2 11/2002 Kimura 7,088,051 B1 8/2006 Cok 6,501,098 B2 12/2002 Yamazaki 7,088,052 B2 8/2006 Kimura 6,501,466 B1 12/2002 Yamazishi et al. 7,102,378 B2 9/2006 Kimura 6,525,683 B1 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Kimura 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Shannon et al. 7,119,493 B2 10/2006 Eryer et al. 6,580,408 B1 6/2003 Shannon et al. 7,112,835 B1 10/2006 Fryer et al. 6,580,408 B1 6/2003 Sekiya et al. 7,122,335 B1 10/2006 Fryer et al. 6,583,375 B1 6/2003 Sekiya et al. 7,123,389 B2 10/2006 Kanap et al. 6,583,375 B1 6/2003 Sekiya et al. 7,124,343 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B3 3/2007 Voshida et al. 6,688,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Sahana et al. 6,688,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Ishizuka et al. 6,677,713 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al. 6,677,713 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.						i 3/3225
6,323,631 B1 11/2001 Juang 7,023,408 B2 4/2006 Chen et al. 6,356,029 B1 3/2002 Hunter 7,027,015 B2 4/2006 Reihl 6,373,454 B1 4/2002 Knapp et al. 7,027,078 B2 4/2006 Reihl 7,0202 Knapp et al. 7,034,793 B2 4/2006 Sekiya et al. 6,392,617 B1 5/2002 Gleason 7,034,793 B2 4/2006 Sekiya et al. 7,034,793 B2 5/2006 Libsch et al. 7,033,393 B2 5/2006 Libsch et al. 7,033,348 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 Libsch et al. 7,057,359 B2 6/2006 Kimura 6,437,106 B1 8/2002 Stewart et al. 7,057,359 B2 6/2006 Kimura 7,064,473 B2 6/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,064,738 B2 7/2006 Libsch et al. 7,071,932 B2 7/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,071,932 B2 7/2006 Libsch et al. 7,071,932 B2 7/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,064,733 B2 6/2006 Cok et al. 7,064,738 B2 9/2006 Cok et al. 7,064,738 B2 9/2006 Kimura 7,088,051 B1 8/2006 Cok et al. 7,088,051 B1 8/2006 Cok et al. 7,065,801,606 B1 12/2002 Yamazaki 7,088,051 B2 8/2006 Kimura 7,088,051 B1 8/2006 Cok et al. 7,106,285 B2 9/2006 Kimura 7,106,285 B2 9/2006 Kimura 7,106,285 B2 9/2006 Kimura 7,112,820 B2 9/2006 Kimura 7,112,820 B2 9/2006 Kimura 7,112,820 B2 9/2006 Kimura 7,112,820 B2 9/2006 Cok et al. 7,112,820 B2 10/2006 Experimental Proposition of the p		11/2001 Chung et al.	0,550,015	22000		
6,373,454 B1 4/2002 Knapp et al. 7,027,078 B2 4/2006 Reihl 6,392,617 B1 5/2002 Gleason 7,034,793 B2 4/2006 Sekiya et al. 7,034,793 B2 4/2006 Coke et al. 7,034,793 B2 5/2006 Libsch et al. 7,038,392 B2 5/2006 Hung et al. 6,417,825 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 Hung et al. 6,433,488 B1* 8/2002 Bu 315/169.3 7,061,451 B2 6/2006 Cok et al. 6,437,106 B1 8/2002 Stoner et al. 7,064,733 B2 6/2006 Cok et al. 6,437,106 B1 8/2002 Kimura 7,088,051 B1 8/2006 Cok et al. 6,445,369 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Libsch et al. 6,501,406 B1 12/2002 Yamazaki 7,088,051 B1 8/2006 Cok Kimura 7,102,378 B2 9/2006 Kimura 8,501,466 B1 12/2002 Yamazaki 7,102,378 B2 9/2006 Kuo et al. 7,102,378 B2 9/2006 Cok Kimura 8,523,182 8/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,542,138 B1 4/2003 Shannon et al. 7,119,493 B2 10/2006 Cok Eryer et al. 6,580,657 B2 6/2003 Sanford et al. 7,122,835 B1 10/2006 Fryer et al. 6,580,657 B2 6/2003 Sanford et al. 7,122,835 B1 10/2006 Kimape et al. 6,583,375 B1 6/2003 Sanford et al. 7,123,389 B2 10/2006 Kimape et al. 6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,583,375 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,030 B1 1/2003 Gilmour et al. 7,244,326 B2 7/2007 Ishizuka et al. 6,668,645 B1 1/2003 Gilmour et al. 7,248,236 B2 7/2007 Tanghe et al. 6,668,645 B1 1/2003 Gilmour et al. 7,248,236 B2 7/2007 Tanghe et al. 6,668,645 B1 1/2004 Sung 7,224,336 B2 9/2007 Ishizuka et al.						
6,392,617 B1 5/2002 Gleason 7,034,793 B2 4/2006 Sekiya et al. 6,414,661 B1 7/2002 Shen et al. 7,033,8392 B2 5/2006 Libsch et al. 6,417,825 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 6,433,488 B1* 8/2002 Bu						
6,414,661 B1 7/2002 Shen et al. 7,038,392 B2 5/2006 Libsch et al. 6,417,825 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 Hung et al. 6,433,488 B1 8/2002 Stoner et al. 7,064,733 B2 6/2006 Kimura 6,445,369 B1 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Libsch et al. 6,501,098 B2 12/2002 Kimura 7,088,051 B1 8/2006 Cok 6,501,466 B1 12/2002 Yamazaki 7,102,378 B2 9/2006 Kimura 6,522,315 B2 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Kuo et al. 6,531,827 B2 3/2003 Kawashima 7,112,820 B2 9/2006 Change et al. 6,580,468 B1 6/2003 Bae et al. 7,112,835 B1 10/2006 Fryer et al. 6,583,775 B1				B2 4/2006 B2 4/2006	Sekiva et al	
6,417,825 B1 7/2002 Stewart et al. 7,057,359 B2 6/2006 Hung et al. 6,433,488 B1* 8/2002 Bu 315/169.3 7,061,451 B2 6/2006 Cok et al. 6,437,106 B1 8/2002 Stoner et al. 7,064,733 B2 6/2006 Cok et al. 6,445,369 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Libsch et al. 6,475,845 B2 11/2002 Kimura 7,088,051 B1 8/2006 Cok 6,501,098 B2 12/2002 Yamazaki 7,088,052 B2 8/2006 Kimura 6,501,466 B1 12/2002 Yamagishi et al. 7,102,378 B2 9/2006 Kuo et al. 6,522,315 B2 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Naugler 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Lo et al. 6,531,827 B2 3/2003 Bae et al. 7,112,838 B1 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,122,835 B1 10/2006 Ikeda et al. 6,580,657 B2 6/2003 Sanford et al. 7,129,914 B2 10/2006 Kaape et al. 6,583,775 B1 6/2003 Sekiya et al. 7,129,914 B2 10/2006 Kaape et al. 6,583,775 B1 6/2003 Sekiya et al. 7,129,914 B2 10/2006 Kaape et al. 6,583,775 B1 6/2003 Sekiya et al. 7,129,914 B2 10/2006 Kaape et al. 6,680,608 B2 7/2003 Everitt 7,193,589 B2 3/2007 Cok 6,694,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Voshida et al. 6,639,244 B1 10/2003 Yamazaki et al. 7,224,332 B2 5/2007 Cok 6,648,645 B1 10/2003 Gilmour et al. 7,248,236 B2 7/2007 Ishizuka 6,668,645 B1 10/2004 Sung 7,224,333 B2 8/2007 Tanghe et al. 6,668,645 B1 1/2004 Sung 7,224,363 B2 9/2007 Ishizuka et al.				B2 5/2006	Libsch et al.	
6,437,106 B1 8/2002 Stoner et al. 7,064,733 B2 6/2006 Cok et al. 6,445,369 B1* 9/2002 Yang et al. 345/82 7,071,932 B2 7/2006 Libsch et al. 6,475,845 B2 11/2002 Kimura 7,088,051 B1 8/2006 Cok 6,501,098 B2 12/2002 Yamazaki 7,088,052 B2 8/2006 Kimura 9/2002 Yamazaki 7,106,285 B2 9/2006 Kuo et al. 6,522,315 B2 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Kuo et al. 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Lo et al. 6,542,138 B1 4/2003 Shannon et al. 7,119,493 B2 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,122,835 B1 10/2006 Ikeda et al. 6,580,657 B2 6/2003 Sanford et al. 7,127,380 B1 10/2006 Iverson et al. 6,583,398 B2 6/2003 Sanford et al. 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Cok 6,618,093 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,093 B2 9/2003 Yamada 348/625 7,227,519 B1 6/2007 Kawase et al. 6,639,244 B1 10/2003 Yamazaki et al. 7,248,236 B2 7/2007 Nathan et al. 6,668,645 B1 1/2004 Sung 7,248,236 B2 7/2007 Nathan et al. 6,668,645 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al. 6,680,580 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.	, , ,					
6,445,369 B1* 9/2002 Yang et al						
6,475,845 B2 11/2002 Kimura 7,088,051 B1 8/2006 Cok 6,501,098 B2 12/2002 Yamazaki 7,088,052 B2 8/2006 Kimura 6,501,466 B1 12/2002 Yamagishi et al. 7,102,378 B2 9/2006 Kuo et al. 6,522,315 B2 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Change et al. 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Lo et al. 6,542,138 B1 4/2003 Shannon et al. 7,119,493 B2 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,122,835 B1 10/2006 Ikeda et al. 6,580,657 B2 6/2003 Sanford et al. 7,127,380 B1 10/2006 Iverson et al. 6,583,398 B2 6/2003 Harkin 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Cok 6,594,606 B2 7/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada 348/625 7,227,519 B1 6/2007 Kawase et al. 6,639,244 B1 10/2003 Gilmour et al. 7,245,277 B2 7/2007 Ishizuka 6,668,645 B1 1/2004 Sung 7,245,358 B2 8/2007 Tanghe et al. 6,677,713 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.						
6,501,098 B2 12/2002 Yamazaki 7,088,052 B2 8/2006 Kimura 6,501,466 B1 12/2002 Yamagishi et al. 7,102,378 B2 9/2006 Kuo et al. 7,102,378 B2 9/2006 Naugler 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Lo et al. 7,119,493 B2 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,119,493 B2 10/2006 Fryer et al. 6,580,657 B2 6/2003 Sanford et al. 7,122,835 B1 10/2006 Ikeda et al. 6,583,398 B2 6/2003 Harkin 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,124,433 B2 10/2006 Knapp et al. 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Cok 6,594,606 B2 7/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada				B1 8/2006	Cok	
6,522,315 B2 2/2003 Ozawa et al. 7,106,285 B2 9/2006 Change et al. 6,525,683 B1 2/2003 Gu 7,112,820 B2 9/2006 Change et al. 10/2006 Lo et al. 6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,122,835 B1 10/2006 Ikeda et al. 6,580,657 B2 6/2003 Sanford et al. 7,127,380 B1 10/2006 Ikeda et al. 6,583,398 B2 6/2003 Harkin 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,124,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Yoshida et al. 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada	6,501,098 B2	12/2002 Yamazaki				
6,525,683 B1						
6,531,827 B2 3/2003 Kawashima 7,116,058 B2 10/2006 Lo et al. 6,542,138 B1 4/2003 Shannon et al. 7,119,493 B2 10/2006 Fryer et al. 6,580,408 B1 6/2003 Bae et al. 7,122,835 B1 10/2006 Ikeda et al. 6,580,657 B2 6/2003 Sanford et al. 7,127,380 B1 10/2006 Ikeda et al. 6,583,398 B2 6/2003 Harkin 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Yoshida et al. 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada					Change et al.	
6,542,138 B1	, ,					
6,580,657 B2 6/2003 Sanford et al. 6,583,398 B2 6/2003 Harkin 6,583,775 B1 6/2003 Sekiya et al. 6,583,775 B1 6/2003 Sekiya et al. 6,594,606 B2 7/2003 Everitt 7,193,589 B2 1/2007 Cok 6,618,030 B2 9/2003 Kane et al. 6,618,097 B1* 9/2003 Yamada						
6,583,398 B2 6/2003 Harkin 7,129,914 B2 10/2006 Knapp et al. 6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Yoshida et al. 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada						
6,583,775 B1 6/2003 Sekiya et al. 7,164,417 B2 1/2007 Cok 6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Yoshida et al. 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1 * 9/2003 Yamada						
6,594,606 B2 7/2003 Everitt 7,193,589 B2 3/2007 Yoshida et al. 6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1 * 9/2003 Yamada						
6,618,030 B2 9/2003 Kane et al. 7,224,332 B2 5/2007 Cok 6,618,097 B1* 9/2003 Yamada	6,594,606 B2	7/2003 Everitt	7,193,589	B2 3/2007	Yoshida et al.	
6,639,244 B1 10/2003 Yamazaki et al. 7,245,277 B2 7/2007 Ishizuka 6,668,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Nathan et al. 6,677,713 B1 1/2004 Sung 7,262,753 B2 8/2007 Tanghe et al. 6,680,580 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.		9/2003 Kane et al.				
6,668,645 B1 12/2003 Gilmour et al. 7,248,236 B2 7/2007 Nathan et al. 6,677,713 B1 1/2004 Sung 7,262,753 B2 8/2007 Tanghe et al. 6,680,580 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.	· · · · · · · · · · · · · · · · · · ·					
6,677,713 B1 1/2004 Sung 7,262,753 B2 8/2007 Tanghe et al. 6,680,580 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.	, ,					
6,680,580 B1 1/2004 Sung 7,274,363 B2 9/2007 Ishizuka et al.						
6,687,266 B1 2/2004 Ma et al. 7,310,092 B2 12/2007 Forrest et al.	6,680,580 B1	1/2004 Sung	7,274,363	B2 9/2007	Ishizuka et al.	
	6,687,266 B1	2/2004 Ma et al.	7,310,092	B2 12/2007	Forrest et al.	

US 10,078,984 B2 Page 3

(56)		Referen	ces Cited		2002/0052086			Maeda Kawashima
	U.S.	PATENT	DOCUMENTS		2002/0067134 2002/0084463 2002/0101172	A1		Sanford et al.
		1/2000	***		2002/0101172			Kimura
7,315,295 7,321,348			Kimura Cok et al.		2002/0103279			Osada et al.
7,339,560		3/2008			2002/0122308		9/2002	
7,355,574			Leon et al.		2002/0158587			Komiya
7,358,941			Ono et al.		2002/0158666			Azami et al.
7,368,868			Sakamoto		2002/0158823		10/2002	Zavracky et al.
7,411,571		8/2008			2002/0167474 2002/0180369			Koyama
7,414,600 7,423,617			Nathan et al. Giraldo et al.		2002/0180721		12/2002	Kimura et al.
7,474,285			Kimura		2002/0186214			Siwinski
7,502,000	B2		Yuki et al.		2002/0190924			Asano et al.
7,528,812			Tsuge et al.		2002/0190971 2002/0195967			Nakamura et al. Kim et al.
7,535,449 7,554,512		6/2009	Miyazawa Steer		2002/0195968			Sanford et al.
7,569,849			Nathan et al.		2003/0020413	$\mathbf{A}1$		Oomura
7,576,718		8/2009	Miyazawa		2003/0030603			Shimoda
7,580,012			Kim et al.		2003/0043088 2003/0057895			Booth et al. Kimura
7,589,707 7,609,239		9/2009 10/2009			2003/005/893			Bertram et al 345/173
7,619,594		11/2009			2003/0062524			Kimura
7,619,597			Nathan et al.		2003/0063081			Kimura et al.
7,633,470	B2	12/2009			2003/0071821 2003/0076048			Sundahl et al. Rutherford
7,656,370			Schneider et al.		2003/00/6048			Kimura
7,800,558 7,847,764			Routley et al. Cok et al.		2003/0090447			Kimura
7,859,492		12/2010			2003/0107560	A1		Yumoto et al.
7,868,859	B2		Tomida et al.		2003/0111966			Mikami et al.
7,876,294			Sasaki et al.		2003/0122745 2003/0122813			Miyazawa Ishizuki et al.
7,924,249 7,932,883			Nathan et al. Klompenhouwer e	t o1	2003/0122813			Kimball H03F 1/086
7,969,390			Yoshida	l 41.				330/9
7,978,187			Nathan et al.		2003/0142088			LeChevalier
7,994,712			Sung et al.		2003/0151569			Lee et al.
8,026,876			Nathan et al.		2003/0156101 2003/0174152			Le Chevalier Noguchi
8,049,420 8,077,123			Tamura et al. Naugler, Jr.		2003/0174132			Sanford et al.
8,115,707			Nathan et al.		2003/0197663	A1	10/2003	Lee et al.
8,212,749			Cho	G09G 3/3241				Mori et al 345/690
		= 10010		313/463	2003/0230141 2003/0230980			Gilmour et al. Forrest et al.
8,223,177 8,232,939			Nathan et al. Nathan et al.		2003/0230380			Lin et al.
8,242,985		8/2012	Kishi	G09G 3/3233	2004/0032382			Cok et al.
0,2 12,5 00	DE	0,2012	1113111	315/169.1	2004/0066357			Kawasaki
8,253,661	B2 *	8/2012	Sun	G09G 3/3275	2004/0070557 2004/0070558			Asano et al. Cok G09G 3/3225
8,259,044	B2	9/2012	Nathan et al.	345/77				345/76
8,264,431			Bulovic et al.		2004/0070565			
8,279,143			Nathan et al.		2004/0090186 2004/0090400		5/2004	Kanauchi et al.
8,284,128	B2 *	10/2012	Kimura		2004/0095297			Libsch et al 345/76
8,339,386	B2	12/2012	Leon et al.	315/169.3	2004/0100427			Miyazawa
9,275,579			Chaji	G09G 3/3258	2004/0108518		6/2004	
9,280,933			Chaji		2004/0135749 2004/0145547		7/2004	Kondakov et al.
9,472,139			Nathan		2004/0150592			Mizukoshi et al.
9,842,544 9,852,689			Nathan		2004/0150594			Koyama et al.
2001/0002703			Koyama	G09G 3/3241	2004/0150595		8/2004	
2001/0009283			Arao et al.		2004/0155841		8/2004	Kasai Sun et al.
2001/0024181			Kubota		2004/0174347 2004/0174354			Ono et al.
2001/0024186		9/2001 10/2001	Kane et al.		2004/0178743			Miller et al.
2001/0026257 2001/0030323		10/2001			2004/0183759			Stevenson et al.
2001/0040541			Yoneda et al.		2004/0189627			Shirasaki et al 345/204
2001/0043173			Troutman		2004/0196275 2004/0207615		10/2004	Yumoto
2001/0045929		11/2001			2004/0239596			Ono et al.
2001/0052606 2001/0052940			Sempel et al. Hagihara et al.		2004/0252089	A1	12/2004	Ono et al.
2002/0000576		1/2002			2004/0257313			Kawashima et al.
2002/0011796	A1	1/2002	Koyama		2004/0257353			Imamura et al.
2002/0011799			Kimura		2004/0257355 2004/0263437		12/2004 12/2004	
2002/0012057 2002/0014851			Kimura Tai et al.		2004/0263444		12/2004	
2002/0014831			Ohki et al.		2004/0263445		12/2004	Inukai et al.
2002/0030190	A1	3/2002	Ohtani et al.		2004/0263541			Takeuchi et al.
2002/0047565	Al	4/2002	Nara et al.		2005/0007355	Al	1/2005	Miura

US 10,078,984 B2 Page 4

(56)	Referen	nces Cited	2007/00970: 2007/00970			Yamazaki et al. Park et al.	
U.S.	PATENT	DOCUMENTS	2007/01034	19 A1	5/2007	Uchino et al.	
			2007/01152			Buchhauser et al. Nathan et al.	
2005/0007357 A1 2005/0017650 A1		Yamashita et al. Fryer et al.	2007/01826 2007/02365		10/2007		
2005/001/030 A1 2005/0024081 A1		Kuo et al.	2007/02419		10/2007		
2005/0024393 A1	2/2005	Kondo et al.	2007/02732			Nagayama	
2005/0030267 A1		Tanghe et al.	2007/02853 2007/02909		12/2007 12/2007		
2005/0057580 A1 2005/0067970 A1		Yamano et al. Libsch et al.	2007/02966			Kim et al.	
2005/0067971 A1	3/2005		2008/00015			Chao et al.	
2005/0068270 A1		Awakura	2008/00015- 2008/00367			Murakami et al. Shirasaki	
2005/0068275 A1*	3/2003	Kane G09G 3/3283 345/82	2008/00429			Takahashi	
2005/0073264 A1	4/2005	Matsumoto	2008/00429			Yamashita et al.	
2005/0083323 A1		Suzuki et al.	2008/00489 2008/00552		2/2008 3/2008	Naugler, Jr. et al.	
2005/0088103 A1		Kageyama et al. Arnold et al.	2008/00332		3/2008		
2005/0110420 A1 2005/0110807 A1		Chang	2008/00885	49 A1	4/2008	Nathan et al.	
2005/0140598 A1	6/2005	Kim et al.	2008/00886			Nathan et al.	
2005/0140610 A1		Smith et al.	2008/01171- 2008/01508-			Nakano et al. Kim et al.	
2005/0145891 A1 2005/0156831 A1	7/2005 7/2005	Abe Yamazaki et al.	2008/02315		9/2008	Naugler	
2005/0168416 A1		Hashimoto et al.	2008/02315			Kwon	G00G 2/2241
2005/0179626 A1		Yuki et al.	2008/02383	27 A1*	10/2008	Cho	315/169.3
2005/0179628 A1 2005/0185200 A1	8/2005 8/2005	Kimura Tobol	2008/02525	71 A1	11/2008	Hente et al.	313/109.3
2005/0200575 A1		Kim et al.	2008/02908	05 A1	11/2008	Yamada et al.	
2005/0206590 A1		Sasaki et al.	2008/02970			Miyake et al.	
2005/0219184 A1 2005/0248515 A1		Zehner et al.	2009/00587 2009/01607		3/2009 6/2009	Tomida et al.	
2005/0259054 A1*		Naugler et al. Wu G09G 3/3216	2009/01746			Wang et al.	
		345/82	2009/01849		7/2009		
2005/0269959 A1		Uchino et al.	2009/01954 2009/02012		8/2009	Naugler, Jr. et al. Routley et al.	
2005/0269960 A1 2005/0280615 A1		Ono et al. Cok et al.	2009/02130-		8/2009		
2005/0280766 A1		Johnson et al.	2010/00048			Ahlers et al.	
2005/0285822 A1		Reddy et al.	2010/00267 2010/00609		2/2010 3/2010	Smith Marcu et al.	
2005/0285825 A1 2006/0001613 A1		Eom et al. Routley et al.	2010/01650		7/2010		
2006/0007072 A1		Choi et al.	2010/01946		8/2010		
2006/0012310 A1		Chen et al.	2010/02079 2010/02774		8/2010	Kimpe et al.	
2006/0012311 A1 2006/0027807 A1		Ogawa Nathan et al.	2010/02/74			Cok et al.	
2006/0027807 A1 2006/0030084 A1		Young	2011/00690			Nakamura et al.	
2006/0038758 A1*		Routley et al 345/81	2011/00690 2011/00747			Kopf et al. Leon et al.	
2006/0038762 A1 2006/0066533 A1	2/2006	Chou Sato et al.	2011/00/47			Botzas et al.	
2006/0000333 A1 2006/0077135 A1		Cok et al.	2011/02279	64 A1		Chaji et al.	
2006/0082523 A1	4/2006	Guo et al.	2011/02934			Mueller Toshiya et al.	
2006/0082529 A1*		Oyama 345/82	2012/00565 2012/00625			Fuchs et al.	
2006/0092185 A1 2006/0097628 A1		Jo et al. Suh et al.	2012/02999	78 A1	11/2012	Chaji	
2006/0097631 A1	5/2006		2013/00273 2013/00575			Nathan et al.	
2006/0103611 A1	5/2006		2013/00373			Nathan et al. Chaji	. H05B 37/02
2006/0149493 A1 2006/0170623 A1		Sambandan et al. Naugler, Jr. et al.				J-	315/224
2006/0176250 A1	8/2006	Nathan et al.					
2006/0208961 A1*		Nathan et al	I	FOREIG	N PATE	NT DOCUMENT	S
2006/0232522 A1*	10/2006	Roy G09G 3/3291 345/76	CA	2 249	502	7/1998	
2006/0244697 A1	11/2006	Lee et al.	CA	2 368		9/1999	
2006/0261841 A1	11/2006		CA	2 242	720	1/2000	
2006/0273997 A1 2006/0284801 A1		Nathan et al. Yoon et al.	CA	2 354		6/2000	
2006/0284895 A1		Marcu et al.	CA CA	2 432 2 436		7/2002 8/2002	
2006/0290618 A1	12/2006		CA	2 438		8/2002	
2007/0001937 A1 2007/0001939 A1		Park et al. Hashimoto et al.	CA	2 463		1/2004	
2007/0001939 A1 2007/0008268 A1		Park et al.	CA CA	2 498 2 522		3/2004 11/2004	
2007/0008297 A1	1/2007	Bassetti	CA	2 443		3/2005	
2007/0057873 A1		Uchino et al.	CA	2 472		12/2005	
2007/0069998 A1 2007/0075727 A1		Naugler et al. Nakano et al.	CA CA	2 567 2 526		1/2006 4/2006	
2007/0076226 A1	4/2007	Klompenhouwer et al.	CA CA	2 550		4/2008	
2007/0080905 A1		Takahara Tanaha	CN	138	1032	11/2002	
2007/0080906 A1 2007/0080908 A1		Tanabe Nathan et al.	CN CN		3908)945	10/2003 4/2006	
2007/0000000 AT	1, 2007		011	1700	,,,,,	7/2000	

(56)	Referen	ces Cited	WO WO 2005/029456 3/2005
	EODEICNI DATEN	AT DOCUMENTS	WO WO 2005/055185 6/2005 WO WO 2006/000101 A1 1/2006
	FOREIGN PALE	NT DOCUMENTS	WO WO 2006/053424 5/2006
EP	0 158 366	10/1985	WO WO 2006/063448 A 6/2006
EP	1 028 471	8/2000	WO WO 2006/084360 A1 8/2006
EP	1 111 577	6/2001	WO WO 2007/003877 A 1/2007
EP	1 130 565 A1	9/2001	WO WO 2007/079572 7/2007 WO WO 2007/120849 A2 10/2007
EP	1 194 013	4/2002 8/2002	WO WO 2007/120049 AZ 10/2007 WO WO 2009/055920 5/2009
EP EP	1 335 430 A1 1 372 136	8/2003 12/2003	WO WO 2010/023270 3/2010
EP	1 381 019	1/2004	WO WO 2011/041224 A1 4/2011
EP	1 418 566	5/2004	
EP	1 429 312 A	6/2004	OTHER PUBLICATIONS
EP EP	1 465 143 A 1 469 448 A	10/2004 10/2004	
EP	1 521 203 A2	4/2005	Alexander et al.: "Unique Electrical Measurement Technology for
EP	1 594 347	11/2005	Compensation, Inspection, and Process Diagnostics of AMOLED
EP	1 784 055 A2	5/2007	HDTV"; dated May 2010 (4 pages).
EP EP	1854338 A1 1 879 169 A1	11/2007 1/2008	Ashtiani et al.: "AMOLED Pixel Circuit With Electronic Compen-
EP	1 879 172	1/2008	sation of Luminance Degradation"; dated Mar. 2007 (4 pages).
GB	2 389 951 A	12/2003	Chaji et al.: "A Current-Mode Comparator for Digital Calibration of
JP	1272298	10/1989	Amorphous Silicon AMOLED Displays"; dated Jul. 2008 (5 pages).
JP JP	4-042619 6-314977	2/1992 11/1004	Chaji et al.: "A fast settling current driver based on the CCII for
JР	8-340243	11/1994 12/1996	AMOLED displays"; dated Dec. 2009 (6 pages).
JР	09-090405	4/1997	Chaji et al.: "A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V~T- and V~O~L~E~D Shift Compensation";
JР	10-254410	9/1998	dated May 2007 (4 pages).
JР	11-202295	7/1999	Chaji et al.: "A Novel Driving Scheme and Pixel Circuit for
JP JP	11-219146 11 231805	8/1999 8/1999	AMOLED Displays"; dated Jun. 2006 (4 pages).
JР	11-282419	10/1999	Chaji et al.: "A Stable Voltage-Programmed Pixel Circuit for a-Si:H
JP	2000-056847	2/2000	AMOLED Displays"; dated Dec. 2006 (12 pages).
JР	2000-81607	3/2000	Chaji et al.: "A Sub-µA fast-settling current-programmed pixel
JP JP	2001-134217 2001-195014	5/2001 7/2001	circuit for AMOLED displays"; dated Sep. 2007.
JР	2001-193014	2/2002	Chaji et al.: "An Enhanced and Simplified Optical Feedback Pixel
JP	2002-91376	3/2002	Circuit for AMOLED Displays"; dated Oct. 2006.
JP	2002514320	5/2002	Chaji et al.: "Compensation technique for DC and transient insta-
JP JP	2002-278513	9/2002	bility of thin film transistor circuits for large-area devices"; dated
JР	2002-333862 2003-076331	11/2002 3/2003	Aug. 2008.
JР	2003124519	4/2003	Chaji et al.: "Electrical Compensation of OLED Luminance Degradation"; dated Dec. 2007 (3 pages).
JР	2003-177709	6/2003	Chaji et al.: "Fast and Offset-Leakage Insensitive Current-Mode
JP JP	2003-271095	9/2003	Line Driver for Active Matrix Displays and Sensors"; dated Feb.
JР	2003-308046 2003-317944	10/2003 11/2003	2009 (8 pages).
JР	2004-145197	5/2004	Chaji et al.: "High-precision, fast current source for large-area
JР	2004-287345	10/2004	current-programmed a-Si flat panels"; dated Sep. 2006 (4 pages).
JP JP	2005-057217	3/2005	Chaji et al.: "Low-Cost AMOLED Television with IGNIS Com-
KR	4-158570 2004-0100887	10/2008 12/2004	pensating Technology"; dated May 2008 (4 pages). Chaji et al.: "Low-Cost Stable a-Si:H AMOLED Display for Por-
TW	342486	10/1998	table Applications"; dated Jun. 2006 (4 pages).
TW	473622	1/2002	Chaji et al.: "Low-Power Low-Cost Voltage-Programmed a-Si:H
TW	485337	5/2002	AMOLED Display"; dated Jun. 2008 (5 pages).
TW TW	502233 538650	9/2002 6/2003	Chaji et al.: "Merged phototransistor pixel with enhanced near
TW	1221268	9/2004	infrared response and flicker noise reduction for biomolecular
TW	200727247	7/2007	imaging"; dated Nov. 2008 (3 pages).
WO WO	WO 1998/48403 WO 1999/48079	10/1998 9/1999	Chaji et al.: "Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays"; dated May 2007 (6 pages).
WO	WO 1999/48079 WO 2001/06484	1/2001	Chaji et al.: "Stable a-Si:H circuits based on short-term stress
WO	WO 2001/27910 A1	4/2001	stability of amorphous silicon thin film transistors"; dated May 2006
WO	WO 2001/63587 A2	8/2001	(4 pages).
WO	WO 2002/067327 A	8/2002	Chaji et al.: "Stable Pixel Circuit for Small-Area High- Resolution
WO WO	WO 2003/001496 A1 WO 2003/034389 A	1/2003 4/2003	a-Si:H AMOLED Displays"; dated Oct. 2008 (6 pages).
WO	2003/063124	7/2003	Chaji et al.: "Stable RGBW AMOLED display with OLED degradation composed in using electrical feedback", dated Esb. 2010 (2)
WO	WO 2003/058594 A1	7/2003	dation compensation using electrical feedback"; dated Feb. 2010 (2
WO	WO 2003/077231	9/2003	pages). Chaji et al.: "Thin-Film Transistor Integration for Biomedical
WO WO	WO 2004/003877 WO 2004/025615 A	1/2004 3/2004	Imaging and AMOLED Displays"; dated 2008 (177 pages).
WO	WO 2004/023013 A WO 2004/034364	4/2004	European Search Report for EP Application No. EP 10166143,
WO	WO 2004/047058	6/2004	dated Sep. 3, 2010 (2 pages).
WO	WO 2004/104975 A1	12/2004	European Search Report for European Application No. EP011122313
WO	WO 2005/022498	3/2005	dated Sep. 14, 2005 (4 pages).
WO	WO 2005/022500 A	3/2005	European Search Report for European Application No. EP 04786661
WO	WO 2005/029455	3/2005	dated Mar. 9, 2009.

(56) References Cited

OTHER PUBLICATIONS

European Search Report for European Application No. EP 05759141 dated Oct. 30, 2009 (2 pages).

European Search Report for European Application No. EP 05819617 dated Jan. 30, 2009.

European Search Report for European Application No. EP 06721798 dated Nov. 12, 2009 (2 pages).

European Search Report for European Application No. EP 07710608.6 dated Mar. 19, 2010 (7 pages).

European Search Report for European Application No. EP 07719579 dated May 20, 2009.

European Search Report for European Application No. EP 07815784 dated Jul. 20, 2010 (2 pages).

European Search Report for European Application No. EP 11739485. 8-1904 dated Aug. 6, 2013, (14 pages).

European Search Report, Application No. EP 10834294.0-1903, dated Apr. 8, 2013, (9 pages).

European Supplementary Search Report corresponding to European Application No. EP 04786662 dated Jan. 19, 2007 (2 pages).

Extended European Search Report dated Apr. 27, 2011 issued during prosecution of European patent application No. EP 09733076.5 (13 pages).

Extended European Search Report dated Jul. 11, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (14 pages).

Extended European Search Report dated Nov. 29, 2012, issued in European Patent Application No. EP 11168677.0 (13 page).

Fossum, Eric R.. "Active Pixel Sensors: Are CCD's Dinosaurs?" SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages). Goh et al., "A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes", IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585.

International Preliminary Report on Patentability for International Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages. International Search Report corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).

International Search Report corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages).

International Search Report corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).

International Search Report corresponding to International Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.

International Search Report corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).

International Search Report for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 5 pages.

International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.

International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.

International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.

International Search Report for PCT Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).

International Search Report dated Dec. 3, 2002, issued in International Patent Application No. PCT/JP02/09668 (4 pages).

International Search Report dated Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).

International Search Report mailed Mar. 21, 2006 issued in International Patent Application No. PCT/CA2005/001897 (2 pages). International Search Report, PCT/IB2012/052372, dated Sep. 12,

International Searching Authority Search Report, PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages.

2012 (3 pages).

International Searching Authority Search Report, PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.

International Searching Authority Written Opinion, PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages.

International Searching Authority Written Opinion, PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages.

International Written Opinion corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages). International Written Opinion corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages).

International Written Opinion corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).

International Written Opinion for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 8 pages.

International Written Opinion for International Application No. PCT/CA2009/000501 dated Jul. 30, 2009 (6 pages).

International Written Opinion dated Mar. 21, 2006 corresponding to International Patent Application No. PCT/CA2005/001897 (4 pages). International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).

International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.

International Written Opinion, PCT/IB2012/052372, dated Sep. 12, 2012 (6 pages).

Kanicki, J., et al. "Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays." Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).

Karim, K. S., et al. "Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging." IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).

Lee, Wonbok: "Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays", Ph.D. Dissertation, University of Southern California (124 pages), Aug. 2008

Ma E Y et al.: "Organic light emitting diode/thin film transistor integration for foldable displays" dated Sep. 15, 1997(4 pages). Mendes E., et al. "A High Resolution Switch-Current Memory Base Cell." IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721). Nathan A. et al., "Thin Film imaging technology on glass and plastic" ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages).

Nathan et al., "Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic", IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486

Nathan et al.: "Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation"; dated Sep. 2009 (1 page).

Office Action in Japanese patent application No. JP2006-527247 dated Mar. 15, 2010. (8 pages).

Office Action in Japanese patent application No. JP2007-545796 dated Sep. 5, 2011. (8 pages).

Partial European Search Report dated Mar. 20, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (8 pages).

Partial European Search Report dated Sep. 22, 2011 corresponding to European Patent Application No. EP 11168677.0 (5 pages).

Rafati et al.: "Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles"; dated 2002 (4 pages).

Safavian et al.: "3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging"; dated Jun. 2006 (4 pages).

Safavian et al.: "A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging"; dated May 2007 (7 pages).

Safavian et al.: "A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging"; dated May 2008 (4 pages).

Search Report for Taiwan Invention Patent Application No. 093128894 dated May 1, 2012. (1 page).

(56) References Cited

OTHER PUBLICATIONS

Search Report for Taiwan Invention Patent Application No. 94144535 dated Nov. 1, 2012. (1 page).

Spindler et al., System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.

Stewart M. et al., "polysilicon TFT technology for active matrix oled displays" IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).

Vygranenko et al.: "Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition"; dated 2009.

Wang et al.: "Indium oxides by reactive ion beam assisted evaporation: From material study to device application"; dated Mar. 2009 (6 pages).

Yi He et al., "Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays", IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.

Yu, Jennifer: "Improve OLED Technology for Display", Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages)

Singh, et al., "Current Conveyor: Novel Universal Active Block", Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48.

Alexander et al.: "Pixel circuits and drive schemes for glass and elastic AMOLED displays"; dated Jul. 2005 (9 pages).

Chaji et al.: "A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays"; dated Jun. 2005 (4 pages). Chaji et al.: "A low-power high-performance digital circuit for deep submicron technologies"; dated Jun. 2005 (4 pages).

Chaji et al.: "A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs"; dated Oct. 2005 (3 pages).

Chaji et al.: "A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays"; dated Aug. 2005 (4 pages).

Chaji et al.: "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel"; dated Apr. 2005 (2 pages).

Chaji et al.: "Dynamic-effect compensating technique for stable a-Si:H AMOLED displays"; dated Aug. 2005 (4 pages).

Chaji et al.: "eUTDSP: a design study of a new VLIW-based DSP architecture"; dated My 2003 (4 pages). Chaji et al.: "High Speed Low Power Adder Design With a New

Chaji et al.: "High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)"; dated Oct. 2001 (4 pages).

Chaji et al.: "Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family"; dated 2002 (4 pages).

European Search Report for European Application No. EP 06 70 5133 dated Jul. 18, 2008.

International Search Report for International Application No. PCT/CA2006/000177 dated Jun. 2, 2006.

Jafarabadiashtiani et al.: "A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback"; dated 2005 (4 pages).

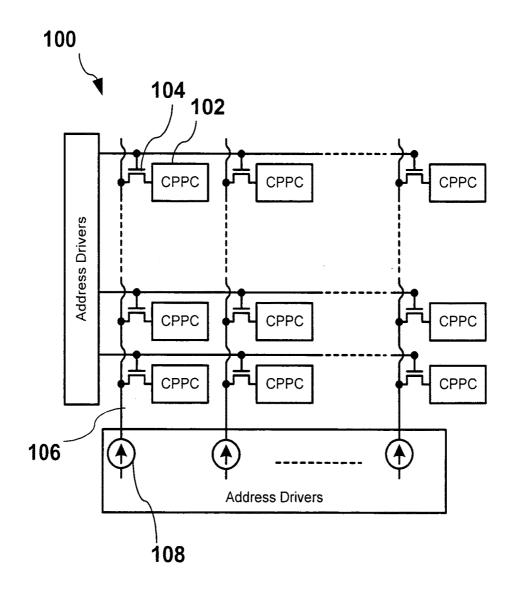
Lee et al.: "Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon"; dated 2006 (6 pages).

Matsueda y et al.: "35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver"; dated May 2004.

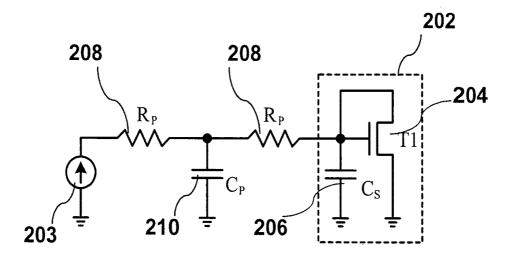
Nathan et al.: "Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays"; dated 2006 (16 pages).

Nathan et al.: "Driving schemes for a-Si and LTPS AMOLED displays"; dated Dec. 2005 (11 pages).

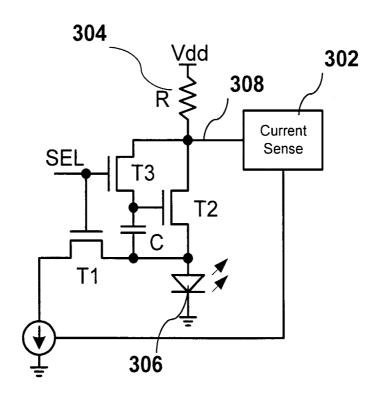
Nathan et al.: "Invited Paper: a -Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)"; dated 2006 (4 pages).

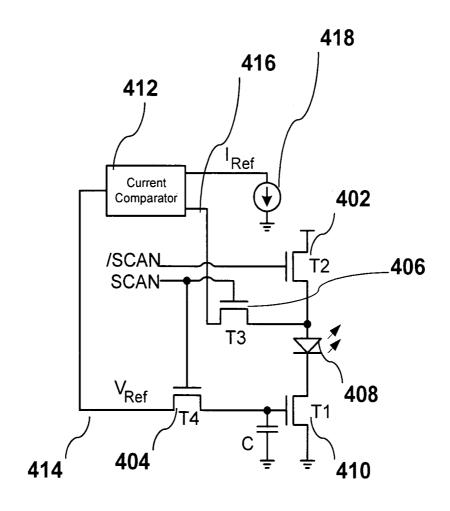

Philipp: "Charge transfer sensing" Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.

Safavaian et al.: "Three-TFT image sensor for real-time digital X-ray imaging"; dated Feb. 2, 2006 (2 pages).


Safavian et al.: "Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy"; dated Aug. 2005 (4 pages).

Safavian et al.: "TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]"; dated Sep. 2005 (9 pages).


* cited by examiner


Prior Art Figure 1

Prior Art
Figure 2

Prior Art
Figure 3

Prior Art
Figure 4

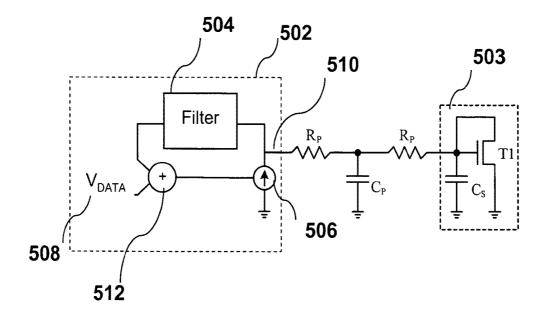


Figure 5

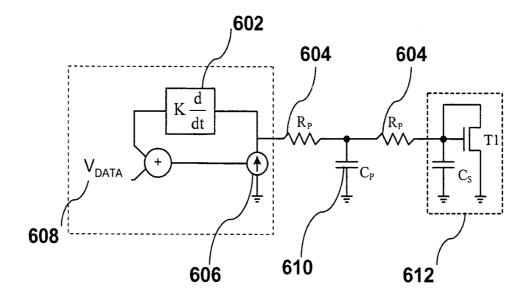


Figure 6

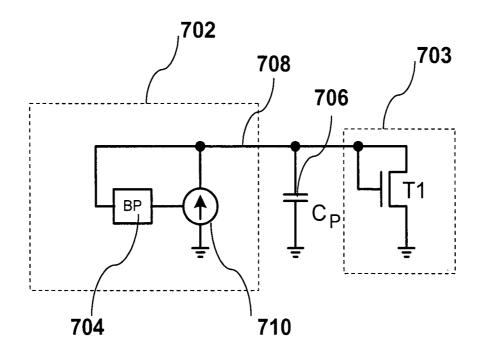


Figure 7

Figure 8a

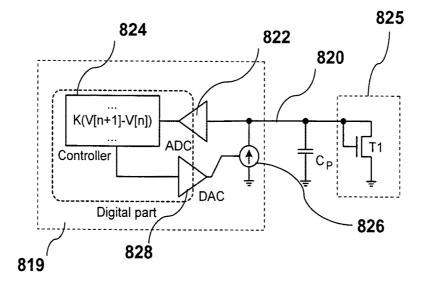


Figure 8b

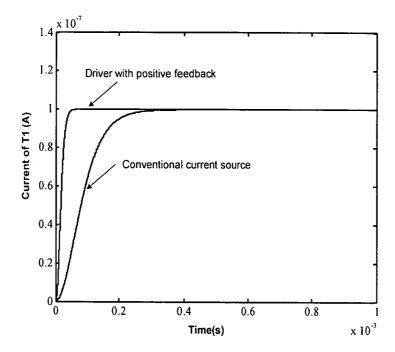


Figure 9

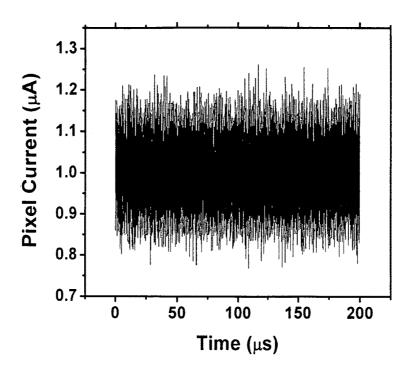


Figure 10a

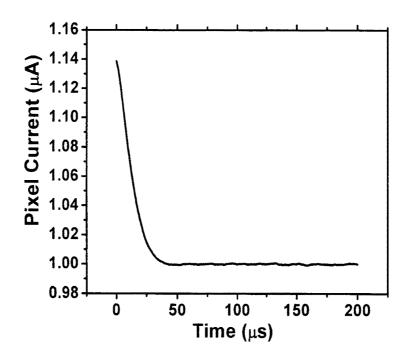


Figure 10b

DRIVING CIRCUIT FOR CURRENT PROGRAMMED ORGANIC LIGHT-EMITTING DIODE DISPLAYS

FIELD OF INVENTION

The present invention relates to methods and apparatus for driving a current line with a parasitic capacitance. In particular, the present invention relates to methods and apparatus for driving organic light-emitting diode (OLED) ¹⁰ displays that are current programmed.

BACKGROUND OF THE INVENTION

Maturing of Flat Panel Display (FPD) technologies has 15 provided larger and lower cost laptop monitors, small area/ low power panels for cell phones and other portable devices, HDTV and widescreen formats for home television, and high reliability daylight readable displays for "glass cockpits" for aircraft.

Emerging technologies such as organic LEDs (OLED) promise to deliver higher quality emissive flat displays, allowing the removal of the backlight. When compared to LCDs, a thinner form-factor with almost perfect viewing angle and much faster response speed would be provided by 25 OLEDs. Thus the intrinsic characteristics of OLEDs give visual and form factor advantages over LCDs.

A typical array structure of an active matrix organic light-emitting diode (AMOLED) is shown in FIG. 1. The display 100 includes an array of pixels 102 that are arranged 30 in rows and columns. The pixels 102 are connected to the data line 106 via a select transistor 104. The transistor 104 is a thin film transistor (TFT). The data line 106 is driven by a current source 108. The overlap capacitance of the transistors 104 connected to data line 106 and the line capacitance of the data line 106 itself leads to a high parasitic capacitance.

The basic OLED structure for a given pixel **102** consists of a stack of thin organic layers between a transparent anode and a metallic cathode. The organic layers include a hole-injection layer, a hole-transport layer, an emissive layer, and an electron transport layer. When an appropriate voltage is applied to the structure the injected positive and negative charges combine in the emissive layer to product light. OLEDs are therefore self-emissive displays and thus do not 45 require a backlight as is required by LCDs. Also the charge combination process causes very little time delay providing for a fast response time.

OLED displays are current-controlled display devices. LCDs, on the other hand, are voltage-controlled. Current 50 programming provides the OLED with a current that is independent of the characteristics of any other components such as thin film transistors (TFT) or the OLED itself, and compensates for V_t shift, spatial mismatch, and OLED degradation. However, the parasitic capacitance contributed 55 from the line and select transistors connected to the line results in a large settling time. The settling time is a function of the initial line voltage and threshold voltage of the drive TFT. Although, the settling time can be improved partially by pre-charging, the improvement is not sufficient for 60 medium and large area displays.

The parasitic capacitance of the drive transistor and the data line to which it is connected is schematically shown in FIG. 2. In particular FIG. 2 schematically shows the equivalent circuit for a current programmed pixel 202, having a 65 current source 203 and a transistor 204, during a programming cycle. Capacitance C_P 210 and resistance R_P 208 are

2

the parasitic components while capacitance C_S **206** is the capacitance of the storage capacitor. If C_S **206** << C_P **210** and R_P **208** is small, the timing constant, or settling time, of the circuit shown in FIG. **2** is:

$$\tau \propto 2 \frac{C_p}{\sqrt{i * \beta}} \tag{1}$$

where β is the coefficient in current-voltage (I-V) characteristics of the transistor **204** given by $I_{ds}=\beta$ $(V_{gs}-V_{th})^2$. Here, I_{ds} is the drain-source current, V_{gs} the gate-source voltage, and V_{th} the threshold voltage.

If the capacitance C_p **210** is a large capacitance, around 40 pf, and β is small for the transistor **204**, which is fabricated with amorphous silicon (a-Si), τ is of the order of millisecond. However, the timing budget of the programming cycle is less than 100 μ s for large area displays. Since the efficiency of the OLED has been increased, the amount of current required to achieve the maximum brightness is very small; therefore, τ , which is also a function of current, increases dramatically.

This parasitic capacitance thus contributes to a high settling time for current programmed pixels, limiting the timing budget of the programming cycle. This can cause considerable error due to imperfect settling. In order to remove this error, a simple and fast solution for driving the current programmed pixels that is suitable for applications in OLED displays is needed.

United States patent application No. 20040095297A1 to Libsch et al. describes a programming method in which the programming current is controlled by a current sensor. A schematic diagram of the circuit of FIG. 1 of Libsch et al. is shown in FIG. 3. During the programming cycle a current sensor 302 monitors the voltage across resistor R 304 through the feedback 308. The current sensor 302 controls the programming current. After the pixel settles, the current flowing through the resistor R 304 and the OLED 306 is the same as wanted current. Because of the use of feedback 308, this driving method has a fast settling time. However, the drawback of this circuit is that it has a high power consumption resulting from resistor R 304. The resistor R 304 should quite large such that the circuit is able to sense a low current level accurately. Therefore, the power dissipated in resistor R 304 is considerable. The other drawback of this circuit is that it suffers from mismatch. The spatial mismatch changes the value of resistor R 304 causing non-uniformity in the display. It also has the addition feedback 308.

U.S. Pat. No. 6,433,488 to Bu discloses an OLED driver circuit that implements a current comparator in a feedback loop. The circuit presented in FIG. 2 of Bu is schematically presented in FIG. 4. In a programming cycle, SCAN is high so the transistor T2 402 is off and the transistor T4 404 is on. Therefore, the current flows through the transistor T3 406, the OLED 408, and the transistor T1 410. A current comparator 412 defines the reference voltage 414 based on comparison result of the pixel current, via feedback line 416, and reference current 418. After the pixel settles, the pixel current 416 is the same as reference current 418. This circuit provides a fast settling time for the pixel because of the use of feedback. However, the circuit has a high power compensation because of the two transistors (T1 410 and T2 402) in the path of current during the driving cycle, further this method uses four transistors and extra feedback line 416.

Therefore there is a need for a circuit that improves the settling time of the current driven circuit that does not encounter the high power consumption of the known circuits

SUMMARY OF THE INVENTION

The present invention relates to a circuit for driving an OLED pixel. The invention further relates to a circuit that enables the use of current programmed pixel circuits in large area displays by improving the settling time.

It is an object of the invention to obviate or mitigate at least one shortcoming of circuits for improving time sensitivity of the prior art.

In accordance with one aspect of the invention a load driving circuit for a load having a parasitic capacitance associated therewith and being current programmed is provided. The driving circuit having a data line having a voltage controlling the load, a feedback loop having a lowpass filter for monitoring the voltage of the data line, and a current source for providing a current to the data line; the current source being controlled by a signal line and an output from the lowpass filter.

In accordance with another aspect of the invention a 25 driving circuit for a light emitting diode that is current programmed and having a parasitic capacitance is provided. The driving circuit having a data line controlling the light emitting diode, a low pass filter monitoring the voltage of the data line, and a current source for providing a current to 30 the data line; the current source being controlled by a signal line and an output from the lowpass filter.

In accordance with another aspect of the invention a driving circuit for a light emitting diode that is current programmed and having a parasitic capacitance is provided. The driving circuit comprising a data line controlling the light emitting diode, a feedback loop comprising, an analogue to digital converter, and a controller running an algorithm that provides low pass filter functionality to the feedback loop, and a current source for providing a current 40 to the data line; the current source receiving input from a digital to analogue converter that receives input from the controller.

In accordance with another aspect of the invention a method of driving a light emitting diode in a display, the 45 light emitting diode having a parasitic capacitance and being current programmed is provided. The method comprising the steps of providing a current to the light emitting diode, the current being provided by a current source, monitoring a voltage of a data line providing the current to the light 50 emitting diode with a low pass filter, and mixing the voltage and a data line signal to form an input, providing the input to the current source.

This summary of the invention does not necessarily describe all features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which 60 reference is made to the appended drawings wherein:

FIG. 1 presents a schematic diagram of a pixel array according of the prior art;

FIG. 2 presents a schematic diagram of parasitics associated with a pixel of an OLED based display of the prior art; 65

FIG. 3 presents a schematic diagram of pixel programming circuit of the prior art;

4

FIG. 4 presents a schematic diagram of another pixel programming circuit of the prior art;

FIG. 5 presents a schematic diagram of a display drive circuit having a feedback circuit in accordance with an 5 embodiment of the invention;

FIG. 6 presents a schematic diagram of a display drive circuit having a feedback circuit in accordance with another embodiment of the invention;

FIG. 7 presents a schematic diagram of a display drive circuit having a bandpass filter in accordance with another embodiment of the invention;

FIG. 8a presents a schematic diagram of a bandpass filter in accordance with another embodiment of the invention;

FIG. 8b presents a schematic diagram of a bandpass filter in accordance with another embodiment of the invention;

FIG. 9 presents curves of settling time in accordance with another embodiment of the invention.

vided. The driving circuit having a data line having a voltage controlling the load, a feedback loop having a lowpass filter to monitoring the voltage of the data line, and a current for monitoring the voltage of the data line, and a current to the data line having a voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a lowpass filter and the voltage of the data line having a voltage

FIG. **10***b* presents calculated noise when a low-pass filter is used in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

As outlined in the discussion of FIG. 2 the settling of the time of the current can be larger than that allowed because of the parasitic capacitance. Embodiments of the invention consider the use of a feedback circuit to provide positive feedback to a current source. This feedback allows for an improvement in the settling time of the current allowing current driven displays to have the necessary response times.

A basic feedback circuit according to one embodiment of the invention is shown in FIG. 5. A display drive circuit 502 is used to drive a light-emitting pixel 503. The drive circuit 502 includes a voltage controlled current source (VCCS) 506 and a feedback loop. Within this feedback loop is a filter 504 and a voltage adder 512. The current source 506 is controlled by V_{DATA} 508 and the output of the filter 504, which monitors the voltage of data line 510. The current source 506, filter 504, and voltage adder 512 are part of the display driver 502 that can be implemented as a separate chip using CMOS technology or as part of a display using on-display TFT technology.

In another embodiment of the invention, shown in FIG. 6, the filter is implemented as a differentiator 602. If the parasitic resistances R_P 604 are small enough and the VCCS 606 is a linear current source, the timing constant for the circuit shown in FIG. 6 is:

$$\tau \propto 2 \frac{(C_p - K)}{\sqrt{i * \beta}} \tag{3}$$

Here 'i' is the current related to V_{DATA} 608. K is the coefficient of the differentiator 602 and should be selected close to the parasitic capacitance C_P 610 in order to achieve the desirable results. However, a reasonable difference between K and C_P has no significant effect on the settling time.

The circuit of FIG. 6 can remove the effect of parasitic capacitance 610 and as a result can be used for fast programming of current programmed pixel 612, which is a general schematic that represent functionality of current

programmed pixels. It will be apparent to one of skill in the art that the circuit of FIG. 6 can be used with any current-programmed pixel circuits.

A filter circuit according to the currently preferred embodiment is shown in FIG. 7. In this embodiment the display drive circuit 702 uses a bandpass (BP) filter 704 for the feedback function. The drive circuit 702 drives the pixel 703 and manages the effect of parasitic capacitance C_P 706 through the use of positive feedback. At the beginning of the programming cycle, the voltage of the line 708 changes rapidly, and so the VCCS 710 pumps more current into current line 708. As the voltage of the current line 708 settles, the current supplied by the current source 710 goes to a programming current (I_P). Also, the band-pass filter 704 mitigates high-frequency noise of the current line 708, which would otherwise influence the output current of the current source 710.

FIG. 8a presents further detail of the bandpass filter used in display drive circuit 702. A simple filter circuit has been 20 used such that the circuit fits within the pixel pitch of approximately 100 µm. The bandpass filter of FIG. 8A is generally indicated as 803 is implemented as a one-pole lowpass Butterworth filter and a differentiator. In the circuit of FIG. 8a a current conveyer type II (CCII) is used for 25 realization of the driver. The Z terminal 808 is connected directly to the Y terminal 806. Therefore, the voltage of node X 804 follows the voltage of the Z terminal 808 due to a feedback between the Y terminal 806 and the X terminal **804**. Also, the capacitor C_{LP} **810** acts as a low pass filter and mitigates any high frequency noise. The capacitor C_F 812, on the other hand, differentiates the voltage at the X terminal **804**, which is equal to the voltage of the line and converts it to a current. The current mirror duplicates this current and $_{35}$ adds it to the programming current (I_p) .

Another implementation of the lowpass filter that uses a digital implementation is presented in FIG. 8b. In this Figure the drive circuit 819 is used to drive pixel 825. The voltage of the line 820 is read back by an ADC 822. The controller 824 block runs an algorithm and changes the current of the current source 826 using the DAC 828. An important aspect of the algorithm run by the controller 824 is the calculation of the difference between the current sample V[n] and the previous sample V[n-1]. With a consideration to this difference the algorithm adjusts the current provided by the current source 826 to speed up the programming.

An analysis of the settling time associated with the circuit of FIG. **8***a* is shown in FIG. **9**. A MATLABTM model was used to investigate the characteristics of the new current source. To simplify the analysis, the cut-off frequency of the LP filter is considered to be high. Thus, the overdrive voltage of T1 can be written as:

$$I_P = (C_P - C_F) \frac{d}{dt} V - \beta V^2 \tag{3}$$

where, V is the overdrive voltage of T1, and C_F the gain of differentiator. It is evident that C_F can compensate for the 60 parasitic capacitance.

In FIG. 9 the settling time of the current source of the drive circuit 702 that implements a LP filter is less than 40 μ s whereas it is 400 μ s for the conventional case i.e. the current is provided by the current source with no feedback. 65 It is also evident that increasing the cut-off frequency of the low pass filter makes the driver more sensitive to the noise

6

of the current line. There is however an increase in the speed as the cut-off frequency increases.

FIG. 10a presents a graph of pixel current over time during the programming cycle when a differentiator or high-pass filter is used. The noise of the line is fed back to the current through the differentiator. This causes the noise to be amplified. Moreover, it can make the driver unstable since the differentiator is highly sensitive to high frequency signals. As is apparent from this graph the noise of the line is amplified and destroys the signal. FIG. 10b presents a graph of pixel current over time during the programming cycle when a low-pass filter is used. The reduced noise is readily apparent when FIG. 10b is compared to FIG. 10a.

The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

What is claimed is:

1. A driving circuit for improving a settling time of current for a current programmed pixel, the current programmed pixel having a light emitting device, the light emitting device being current programmed, the driving circuit comprising:

- a data line coupled to the current programmed pixel, for controlling the light emitting device;
- a programmable current source for providing via the data line programming current to the current programmed pixel during a programming cycle; and
- a positive feedback loop coupled to the data line including:
 - a first capacitor directly coupled to a node, the first capacitor acting as a low pass filter to mitigate high frequency noise, a node voltage of the node following a voltage of the data line;
 - a second capacitor directly coupled to the node, the second capacitor differentiating the node voltage generating a first current; and
 - a current mirror coupled to the node, the current mirror duplicating the first current and adding the duplicated first current to the programming current.
- 2. A driving circuit for improving a settling time of current for a current programmed pixel having a light emitting device, the light emitting device being current programmed, 45 the driving circuit comprising:
 - a data line coupled to the current programmed pixel, for controlling the light emitting device;
 - a capacitor directly coupled to a node, a node voltage of the node following a voltage of the data line, the capacitor differentiating the node voltage generating a first current;
 - a programmable current source for providing via the data line programming current to the current programmed pixel during a programming cycle; and
 - a current mirror coupled to the node, the current mirror duplicating the first current and adding the duplicated first current to the programming current.
 - 3. The driving circuit according to claim 2 wherein the light emitting device is an organic light emitting diode.
 - **4**. The driving circuit according to claim **2**, wherein an illumination of the light emitting device is responsive to the programming current provided by the data line.
 - 5. The driving circuit according to claim 2, wherein the light emitting device is controlled by a thin film transistor.
 - **6**. A display having an array of pixels each including an organic light emitting diode driven by the driving circuit according to claim **2**.

7. A method of improving a settling time of current for a current programmed pixel having a light emitting device in a display, the light emitting device being current programmed, the method comprising steps of:

7

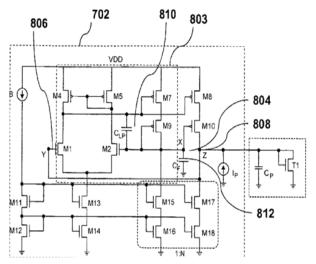
providing, during a programming cycle from a program- 5 mable current source, programming current via a data line to a current-programmed pixel;

in a positive feedback loop, differentiating a node voltage of a node generating a first current, the node voltage following a voltage of the data line;

low pass filtering the node voltage; and

duplicating the first current and adding the duplicated first current to the programming current.

8. The method according to claim **7**, wherein the light emitting device is an organic light emitting diode.


* * * * *

专利名称(译)	用于电流编程的有机发光二极管显示器的驱动电路					
公开(公告)号	<u>US10078984</u>	公开(公告)日	2018-09-18			
申请号	US11/350610	申请日	2006-02-09			
[标]申请(专利权)人(译)	NATHAN AROKIA CHAJI的Gholamreza					
申请(专利权)人(译)	NATHAN,AROKIA CHAJI,的Gholamreza					
当前申请(专利权)人(译)	IGNIS创新INC.					
[标]发明人	NATHAN AROKIA CHAJI GHOLAMREZA					
发明人	NATHAN, AROKIA CHAJI, GHOLAMREZA					
IPC分类号	G09G3/30 G09G3/3283 H05B33/08 G09G3/3241 G09G3/32 G09G3/3208					
CPC分类号	G09G3/3283 H05B33/08 G09G3/3241 G09G2310/0248 G09G2320/0252 G09G2320/0295 G09G2330 /06					
代理机构(译)	尼克松皮博迪律师事务所					
助理审查员(译)	LAM , NELSON					
优先权	2496642 2005-02-10 CA					
其他公开文献	US20060208961A1					
外部链接	Espacenet					

摘要(译)

提供了一种用于具有与之相关的寄生电容的负载的负载驱动电路。负载 是电流编程的。驱动电路具有数据线,该数据线具有控制负载的电压, 反馈环路具有用于监视数据线电压的低通滤波器;以及向数据线提供电流 的电流源;电流源由信号线和低通滤波器的输出控制。

